β* - Locally Closed Sets in Topological Spaces

K. Rajendra Suba PG Department of Mathematics A.P.C. Mahalaxmi College for Women, Thoothukudi

Abstract

In this paper we introduce three forms of β^* - locally closed sets called β^* - LC sets, β^* - LC* sets and β^* - LC** sets. Properties of these new concepts are studied as well as their relations to the other classes of locally closed sets will be investigated. Additionally, we define β^* - Locally continuous function and compare it with other locally continuous functions in topological spaces.

Keywords: β^* - LC sets, β^* - LC* sets and β^* - LC** sets.

I. Introduction

The notion of a locally closed set in a topological space was introduced by kurutowski and seerpinski [10]. According to bourbaki [3] a subset A of a topological space X is called locally closed in X if it is the intersection of an open set and a closed set in X. Ganster and Reilly used locally closed sets to define LC - continuity and LC - irresoluteness. Balachandran, Sundaram and Maki [2] introduced the concept of generalized locally closed sets in topological spaces and introduced some of their properties. Also various authors like, Arockiarani, Gnanambal, Park and Park and Veera Kumar [8] have introduced regular-generalized locally closed sets, semi-generalized locally closed sets and g^* - locally closed sets respectively in topological spaces.

In this paper, we introduce three weaker forms of locally closed sets denoted by β^* - LC(X, τ), β^* - LC^{*}(X, τ), β^* - LC^{**}(X, τ) each of which contains LC(X, τ) and obtained some of their properties and also their relationships with other locally closed sets.

II. Preliminaries

Definition 2.1: A subset A of a topological space (X, τ) is called locally closed [3], if $A = U \cap F$. where $U \in \tau$ and F is closed in (X, τ) .

Definition 2.2: A subset A of a topological space (X, τ) is called β - locally closed (briefly β - LC) set if A = U \cap V. Where U is β - open and V is β - closed.

Definition 2.3: A subset S of (X, τ) is called g - locally closed set[2] (briefly g- lc) if $S = G \cap F$. where G is g - open in (X, τ) and F is g - closed in (X, τ) . Every g - closed set (resp. g - open set) is g- lc.

Definition2.4: A function $f: X, \tau \to (Y, \sigma)$ is called β - continuous if $f^{-1}(0)$ is a β - open of (X, τ) for every open set o of (Y, σ) .

Definition2.5: A subset A of a topological space is said to be β^* - open if $A \subseteq cl(int^*(cl(A)))$.

Definition 2.6: The complement of β^* - open set in X is β^* - closed set in X.

III. β^* - Locally Closed Sets

In this section we introduce three forms of locally closed sets denoted by β^* -locally closed sets, β^* - LC* sets and β^* - LC** sets and obtain some of their properties and also their relationships with g- lc sets, β - locally closed sets.

Definition 3.1: A subset A of a topological space (X, τ) is called a β^* - locally closed set if $A = S \cap F$. Where S is β^* - open and F is β^* - closed.

The class of all β^* - locally closed sets in (X, τ) is denoted by β^* - LC (X, τ) .

Example 3.2: Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a, b\}, X\}$, $\beta * O(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, a, c\}$,

 $\{b, c\}, X\}$ and $\beta * C(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}.$

Then β^* - LC(X, τ) = { ϕ , {a}, {b}, {a, c}, {b, c}, X}.

Definitions 3.3: A subset A of a topological space (X, τ) is said to be β^* - LC* set if there exits β^* - open set S and a closed set F of (X, τ) such that $A = S \cap F$.

Example 3.4: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$, $\tau^c = \{\phi, \{d\}, \{c, d\}, \{c,$

 $\{a, c, d\}, \{b, c, d\}, X\}. \ \beta*O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{b, c\}, \{b, d\}, \{b, c\}, \{$

 $\{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then β^* - LC^{*} (X, τ) = { ϕ , {c, d}, {a, c, d}, {b, c, d}, X}.

Definitions 3.5: A subset A of a topological space (X, τ) is said to be β^* - LC^{**} - set if there is an open set S and a β^* - closed set F of (X, τ) such that $A = S \cap F$.

Example 3.6: Let X = { a, b, c, d }, $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}, \beta^*C(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{c, b\}, \{c, b\},$

 $\{a, c, d\}, \{b, c, d\}, X\}$. Then $\beta^{*-} LC^{**}(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$.

Theorem 3.7: If a subset A of (X, τ) is locally closed then it is β^* - LC (X, τ) , β^* - LC $^*(X, \tau)$, β^* - LC $^{**}(X, \tau)$ set.

Proof : Let $A = P \cap Q$ Where P is open and Q is closed in (X, τ) . Since every open set is β^* -open and every closed is β^* - closed, A is β^* - LC (X, τ) , β^* - LC (X, τ) , β^* - LC (X, τ) .

Remark 3.8 : The Converse of the above theorem need not be true as seen from following example.

Example 3.9: Let X = { a, b, c, d }, $\tau = \{\phi, \{a\}, \{b, c, d\}, X\}, \tau^c = \{\phi, \{a\}, \{b, c, d\}, X\}.$ $\beta^*O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{c, d\}, \{b, c, d\}, X\}.$ $\{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}.$ $\beta^*C(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c, d\}, X\}.$ Here $\{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b\}, \{a, c\}, \{b, d\}, \{c, d\}, \{c$ $\{a, b\}, \{a, c\}, \{b, c\}, X\}$ Then β^* - LC^{*}(X, τ) = $\{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, X\}$ and

LC (X, τ) ={ ϕ ,{c},{a, b}, X}.Here{a},{a, c} is β^* - LC^{*} (X, τ) but not LC (X, τ).

Example 3.11: Let X = { a, b, c, d }, $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, c\}, \{a, c, c\}, \{a, c, c\}, \{a, c,$

 $\{a, b, d\}, X\}, \tau^{c} = \{\phi, \{c\}, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}.$

 $\beta^*O(X,\tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a,$

 $\{b, c, d\}, X\}. \ \beta * C(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d$

{a, b, d}, X} and LC (X, τ) ={ ϕ ,{c},{a, b, d}, X}.Here{a},{b}, {a, c},{b, c} is β^* - LC^{**} (X, τ) but not LC (X, τ).

Theorem 3.12: If a subset A of (X, τ) is β^* - LC^{*}- set then it is β^* - LC - set.

Proof: Let A be a β^* - LC^{*}- set. Let P be a β^* - set in (X, τ) and Q be closed set in (X, τ) .Since A is β^* - LC^{*}- set by definitions, A=P \cap Q. Since every closed set is β^* - closed then Q is β^* - closed. Then A is β^* - LC- set.

Remark 3.13: The converse of the above theorem need not be true as seen from the following example.

Example3.14: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$, $\tau^c = \{\phi, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. $\beta^*O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{a, c, d\}, \{a, c, d\}, \{b, c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then $\beta^*- LC(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$ and $\beta^*- LC^*(X, \tau) = \{\phi, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Here $\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, \tau\}, \{c$

Proof: It follows from the definitions 3.1 and 3.3.

Remark 3.16: The converse of the above theorem need not be true as seen from the following example.

 β *- LC^{**}(X, τ).

Theorem 3.18: If a subset A of (X, τ) is β - LC set then A is β *- LC - set.

Proof: Let $A = P \cap Q$. Where P is β - Open, Q is β - Closed in (X, τ) . Since, every β - Open set is β^* - Open and every β - Closed set is β^* - Closed. Therefore, A is β^* - LC - set in (X, τ) .

Remark 3.19: The Converse of the above theorem need not be true as seen from the following example.

Example 3.20: Let X = { a, b, c, d }, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}, \tau^{c} = \{\phi, \{d\}, \{a, b\}, \{a, b, c\}, X\}, \tau^{c} = \{\phi, \{d\}, \{a, b\}, \{a$ $\{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. $\beta * O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, b\}, \{a, c\}, \{a, c\},$ $\{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}.$ $\beta O(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, c, c\}, \{a,$ d}, X}, $\beta C(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{c, d\}, \{c$ X},Then β^* - LC (X, τ) = { ϕ , {a},{b},{c}, {a, b}, {a, c},{a, d},{b, c},{b, d}, {c, d},{a, b, d}, $\{a, c, d\}, \{b, c, d\}, X\}$ and β - LC (X, τ) = { ϕ , {a}, {b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, c, d}, $\{b, c, d\}, X\}$. Here $\{c\}, \{a, b\}, \{a, d\}, \{c, d\}, \{a, b, d\}$ is β^* - LC (X, τ) but not β - LC (X, τ) . **Remark 3.21:** Intersection of two β^* - LC sets (resp. β^* - LC^{*}- sets, β^* - LC^{**} -sets) need not be a β^* - LC (resp. β^* - LC^{*} - sets, β^* - LC^{**}- sets) as seen from the following example. **Example 3.21:** Let X = { a, b, c, d }, $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\},\$ $\tau^{c} = \{\phi, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. $\beta^{*}O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{c\}, a\}$ $\{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. β *C (X, τ) $= \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{c, d\}, \{$ {a, c, d}, {b, c, d}, X}. Here {a, d}, {b, c, d} is in β^* - LC (X, τ) but {a, d} \cap {b, c, d}= {d} is not in β - LC(X, τ). Also β^* - LC^{*}(X, τ) = { ϕ , {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, X}. Here $\{a, d\}, \{b, d\}$ is in β^* - LC^{*} (X, τ) but $\{a, d\} \cap \{b, d\} = \{d\}$ is not in β^* - LC^{*} (X, τ).

IV. β*- LC Continuous Function in Topological Space

In this section we introduce the concept of β^* - LC continuous and β^* - LC^{*} Continuous and β^* - LC^{**} Continuous functions maps are defined and some of their properties are obtained. **Definition 4.1:** Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a map. Then *f* is called

(i) β^* - LC continuous if $f^{-1}(V) \in \beta^*$ - LC (X, τ) for each $V \in (Y, \sigma)$

(ii) β^* - LC^{*} continuous if f⁻¹ (V) $\in \beta^*$ - LC^{*} (X, τ) for each V \in (Y, σ)

(iii) β^* - LC^{**} continuous if f⁻¹ (V) $\in \beta^*$ - LC^{**} (X, τ) for each V \in (Y, σ)

Example 4.2 : Let $X = Y = \{ a, b, c \}$, $\tau = \{ \phi, \{a, b\}, X \}$, $\tau^c = \{ \phi, \{c\}, X \}$, $\sigma = \{ \phi, \{a\}, Y \}$,

 $\sigma^{c} = \{ \phi, \{b, c\}, Y \}. \ \beta^{*}O(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X \}.$

 $\beta^*C(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$ Then $\beta^*-LC(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, c\}, \{b, c\}, X\}$. X}. Then the function $f : (X, \tau) \rightarrow (Y, \sigma)$ defined by f(a) = b, f(b) = c, f(c) = a. Clearly f is β^* -LC continuous.

Example 4.3 : Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{c\}, \{a, b\}, X\}, \tau^c = \{\phi, \{c\}, \{a, b\}, X\}, \sigma = \{\phi, \{a, b\}, Y\}, \sigma^c = \{\phi, \{c\}, Y\}, \beta^*O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}.$ $\beta^*C(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\} \text{ Then } \beta^*\text{-} LC(X, \tau) = \{\phi, \{c\}, \{a, b\}, X\}.$ Then the function $f : (X, \tau) \rightarrow (Y, \sigma)$ defined by f(a) = a, f(b) = b, f(c) = c. Clearly f is $\beta^*\text{-} LC^*$ continuous.

Example 4.4 : Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}$, $\tau^{c} = \{\phi, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$, $\sigma = \{\phi, \{a, b\}, Y\}$, $\sigma^{c} = \{\phi, \{c, d\}, Y\}$. $\beta^{*}O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. $\{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. $\{b, c\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$ Then β^{*} - LC^{**} (X, τ) = $\{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Then the function $f : (X, \tau) \rightarrow (Y, \sigma)$ defined by f(a) = b, f(b) = c, f(c) = a. Clearly f is β^{*} - LC^{**} continuous.

Theorem 4.5: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function. Then we have the following

1. If f is LC - continuous then f is β^* - LC continuous, β^* - LC^{*} continuous, β^* - LC^{**} continuous.

2. If **f** is β^* - LC^{*} continuous (or) β^* - LC^{**} continuous function the f is β^* - LC continuous.

Proof:

1. Suppose that f is LC – continuous. Let V be an open set of (X, τ) . Then $f^{-1}(V)$ is locally closed in (X, τ) . Since every locally closed set is β^* - LC set, β^* - LC^{*}- set, β^* - LC^{**}- set, it follows that f is β^* - LC continuous, β^* - LC^{*} continuous, β^* - LC^{**} continuous.

2 .Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a $\beta^{*-} LC^{*}$ continuous (or) $\beta^{*-} LC^{**}$ continuous function. Since every $\beta^{*-} LC^{*}$ - set is $\beta^{*-} LC$ - set and every $\beta^{*-} LC^{**}$ - set is $\beta^{*-} LC$ - set. Therefore the proof follows.

Remark 4.6: The converse of the above theorem need not be true as seen from the following example.

Example 4.7:

1) Every β*- LC continuous is not LC continuous:

Let X={a, b, c, d}, Y={a, b, c, d} $\tau =$ {X, ϕ ,{a},{b, c, d} & \sigma={X, ϕ ,{a},{a, b, c}}, $\beta^*- LC(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}$. Let f : (X, τ) \rightarrow (Y, σ) define by f(a) = a, f(b) = b, f(c) = c, f(d) = d. Clearly f is β^* - LC continuous but not locally closed, since f^1 {a, b, c}= abc is not LC in X.

2) Every β^* - LC^{*} continuous is not LC continuous:

Let $X = \{a, b, c\}$, $Y = \{a, b, c\}$, $\tau = \{X, \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$ $\sigma = \{X, \phi, \{a\}, \{a, b\}, \{a, b\},$

{a, c}}, β^* - LC^{*} (X, τ) = { X, ϕ , {a}, {c}, {a, b}, {a, c}} . Let $f: X \to Y$ defined by f(a)= a, f(b)= b, f(c) = c. Cleary f is β^* - LC^{*} continuous but f⁻¹ {a, c} = ac is not LC in X. Hence f is not LC continuous in X.

3) Every β^* - LC^{**} continuous is not LC - continuous:

Let X = {a, b, c}, Y= {a, b, c}, $\tau = \{ X, \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\} \}$ $\sigma = \{X, \phi, \{a, b\} \}$,

 β^* - LC^{**} (X, τ) = { X, ϕ , {b}, {c}, {a, b}, {b, c}}. Let $f: X \to Y$ defined by f(a) = c, f(b) = a, f(c) = b. Cleary f is β^* - LC^{**} continuous but f¹ {a, b}= bc is not LC in X. Hence f is not LC continuous in X.

4) Every β^* - LC continuous is not β^* - LC^{*} continuous:

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$ $\sigma = \{X, \phi, \{c\}, \{a, c\}, \{b, c\}\}$ β^* - LC (X, τ) = {X, ϕ , {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}, β^* - LC^{*}(X, τ) = { X, ϕ , {a}, {c}, {a, b}, {a, c}}. Let $f: X \rightarrow Y$ f(a) = a, f(b) = b, f(c) = c. Clearly f is β^* - LC continuous but not β^* - LC^{*} continuous since f⁻¹ {b, c} = {b, c} is not in β^* - LC^{*}.

5) Every β^* - LC continuous is not β^* - LC^{**} continuous:

Let $X = Y = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}\}$. β^* - LC $(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}, \{c, d\}, \{$

 $\{a, b, d\}, \{a, c, d\}\}. \beta^*- LC^{**}(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b, d\}\}.$

 $\sigma = \{X, \phi, \{a\}, \{a, b, c\}\}, \text{Let } f: X \rightarrow Y f(a) = a, f(b) = d, f(c) = b, f(d) = c \text{ . Clearly } f \text{ is } f(a) = c \text{ . Clearly } f(a) = c \text{ . C$

 β^* - LC continuous but not β^* - LC^{**}.

Theorem 4.8: If $f: (X, \tau) \to (Y, \sigma)$ is β^* - LC continuous and $g: (Y, \sigma) \to (Z, \eta)$ is continuous, then $g \circ f: (X, \tau) \to (Z, \eta)$ is β^* - LC continuous function.

Proof: Let F be a closed set in (Z, η) . Then $g^{-1}(F)$ is closed in (Y, σ) . Since g is continuous, then $f^{-1}(g^{-1}(F))$ is β^* - LC set in (X, τ) as f is β^* - LC continuous then $g \circ f: (X, \tau) \to (Z, \eta)$ is β^* - LC continuous function. **Theorem 4.9 :** If $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be any two functions. Then

(i) $g \circ f$ is β^* - LC^{*}.- continuous if f is β^* - LC^{*}.- continuous and g is continuous.

(ii) $g \circ f$ is β^* - LC^{**}.- continuous if f is β^* - LC^{**}.- continuous and g is continuous.

Proof: The proof is similar to that of Theorem 4.8.

References

[1] I.Arockiarani ,K.Balachandran and M.Ganster ,Regular generalized locally closed sets and rglcontinuous function ,Indian J.Pure.Appl.Math., 28(5) (1997), 661-669.

[2] P.Anbarasi Rodrigo and K. Rajendra Suba, A new notion of β^* - closed sets, IMRF.

[3] P.Anbarasi Rodrigo and K.Rajendra Suba, More functions associated with β^* -Continuous, (IJAETMAS), Volume 05 - Issue 02, PP. 47-56.

[4] P.Anbarasi Rodrigo and K.Rajendra Suba, Functions related to β^* - closed sets in topological spaces, International Conference On Recent Trends In Mathematics And Information Technology, IJMTT, pp 96-100.

[5] P.Anbarasi Rodrigo and K.Rajendra Suba, On β^* - open and closed map in topological spaces, International Conference On Recent Trends In Multi-Disciplinary Research.

[6] P.Anbarasi Rodrigo and K.Rajendra Suba, International Journal of Mathematics Trends and Technology, Volume 8, pp. 559- 566.

[7] P.Anbarasi Rodrigo and K.Rajendra Suba, International Conference on Mathematical Modeling, Applied Analysis and Computation - 2018.

[8] K.Balachandran ,P.Sundaram and H.Maki ,Generalized locally closed sets and glccontinuous functions , Indian J.Pure .Appl .Math ., 27(3) (1996) 235-244.

[9] N.Bourbaki, General Topology, Part I, AddisonWesley, Reading, Mass., 1996.

[10] M.Ganster and I.L.Reilly ,Locally closed sets and LC-continuous functions ,Internat .J.Math& Math .Sci .,12(3) (1989) ,417-424.

[11]N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.

[12] Kurutawski, C and Sierpinski, W. Sur lesdifferences de deux ensembles fermes Tohoku Math.J.20 (1921), 22-25.